Bootstrap

详解 WebRTC 传输安全机制:一文读懂 DTLS 协议

作者|进学

审校|泰一

DTLS (Datagram Transport Layer Security) 基于 UDP 场景下数据包可能丢失或重新排序的现实情况下,为 UDP 定制和改进的 TLS 协议。在 WebRTC 中使用 DTLS 的地方包括两部分:协商和管理 密钥和为 提供加密通道。

本文结合实际数据包分析 WebRTC 使用 DTLS 进行 SRTP 密钥协商的流程。并对在实际项目中使用 DTLS 遇到的问题进行总结。

DTLS 协议简介

在分析 DTLS 在 WebRTC 中的应用之前,先介绍下 DTLS 协议的基本原理。DTLS 协议由两层组成: Record 协议 和 Handshake 协议

HandShake

TLS 握手协议流程如下,参考

DTLS 握手协议流程如下,参考

TLS 和 DTLS 的握手过程基本上是一致的,差别以及特别说明如下:

  • DTLS 中 是为防止 DoS 攻击增加的消息。

  • TLS 没有发送 ,这个也不是必须的,是反向验证即服务器验证客户端。

  • DTLS 的 RecordLayer 新增了 SequenceNumber 和 Epoch,以及 ClientHello 中新增了 Cookie,以及 Handshake 中新增了 Fragment 信息(防止超过 UDP 的 MTU),都是为了适应 UDP 的丢包以及容易被攻击做的改进。参考

  • DTLS 最后的 Alert 是将客户端的 Encrypted Alert 消息,解密之后直接响应给客户端的,实际上 Server 应该回应加密的消息,这里我们的服务器回应明文是为了解析客户端加密的那个 Alert 包是什么。

RecordLayer 协议是和 DTLS 传输相关的协议,UDP 之上是 RecordLayer,RecordLayer 之上是 Handshake 或 ChangeCipherSpec 或 ApplicationData。RecordLayer 协议定义参考 ,实际上有三种 RecordLayer 的包:

  • ,DTLS 明文的 RecordLayer。

  • ,压缩的数据,一般不用。

  • ,加密的数据,在 ChangeCipherSpec 之后就是这种了。

没有明确的字段说明是哪种消息,不过可以根据上下文以及内容判断。比如 ChangeCipherSpec 是可以通过类型,它肯定是一个 Plaintext。除了 Finished 的其他握手,一般都是 Plaintext。

SRTP 密钥协商

角色协商

在 DTLS 协议,通信的双方有 和 之分。在 WebRTC 中 DTLS 协商的身份是在 中描述的。描述如下,参考 中 DTLS 参数

a=setup:active

属性在

setup:active,作为 client,主动发起协商

setup:passive, 作为 sever,等待发起协商

setup:actpass, 作为 client,主动发起协商。作为 server,等待发起协商。

算法协商 - Hello 消息

ClienHello 和 ServerHello 协商 DTLS 的 Version、CipherSuites、Random、以及 Extensions。

  • :Client 给出自己能支持的、或者要使用的最高版本,比如 DTLS1.2。Server 收到这个信息后,根据自己能支持的、或者要使用的版本回应,比如 DTLS1.0。最终以协商的版本也就是 DTLS1.0 为准。

  • :Client 给出自己能支持的加密套件 CipherSuites,Server 收到后选择自己能支持的回应一个,比如 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014),加密套件确定了证书的类型、密钥生成算法、摘要算法等。

  • :双方的随机数,参与到生成 MasterSecret。MasterSecret 会用来生成主密钥,导出 SRTP 密钥。详见 [导出 SRTP 密钥]

  • :Client 给出自己要使用的扩展协议,Server 可以回应自己支持的。比如 Client 虽然设置了 SessionTicket TLS 这个扩展,但是 Server 没有回应,所以最终并不会使用这个扩展。

Cipher Suite

在 Hello 消息中加密套接字使用 中的注册的名字。IANA 名字由 Protocol,Key Exchange Algorithm,Authentication Algorithm,Encryption Algorithm ,Hash Algorithm 的描述组成。例如,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 的含义如下:

  • : Transport Layer Security (TLS)

  • : Elliptic Curve Diffie-Hellman Ephemeral (ECDHE)

  • : Rivest Shamir Adleman algorithm (RSA)

  • : Advanced Encryption Standard with 128bit key in Galois/Counter mode (AES 128 GCM)

  • : Secure Hash Algorithm 256 (SHA256)

加密套接字在 可以查到。在查到 IANA 名字的同时,也可以查到在 OpenSSL 中的名字。TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 在 OpenSSL 中的名字为 ECDHE-RSA-AES128-GCM-SHA256Note: 关于 Authentication (认证)、KeyExchange (密钥交换)、Encryption (加密)、MAC (Message Authentication Code) 消息摘要等,可以参考

Extension

DTLS 的扩展协议,是在 ClientHello 和 ServerHello 的 Extensions 信息中指定的,所有的 TLS 扩展参考 。下面列出几个 WebRTC 用到的扩展:

  • : DTLS 握手完成后 (Finished),使用 SRTP 传输数据,DTLS 生成 SRTP 的密钥。 。ClientHello 中的扩展信息定义了

  • ,原来的名字为 elliptic_curves,描述支持的 ECC 加密算法,参考 ,一般用的是 secp256r1。

  • ,DTLS1.2 的扩展,指定使用的 Hash 和 Signature 算法,参考 。DTLS1.0,RSA 用的是 md5sha1 摘要算法,DSA 用的是 sha1 摘要算法。

  • ,扩展 MasterSecret 的生成方式,参考 。在 KeyExchange 中,会加入一些常量来生成 MasterSecret。TLS 定义了扩展方式,如果用这个扩展,DTLS 的方式和 TLS 会有些不同。

  • , 参考

除了这些扩展协议,和 SRTP 密钥导出相关的还有:

RFC5705: Keying Material Exporters for Transport Layer Security (TLS),DTLS 如何从 MasterSecret 导出 Key,比如 SRTP 的 Key。RFC5764: DTLS Extension to Establish Keys for the SRTP,DTLS 的 use_srtp 扩展的详细规范,包括 ClientHello 扩展定义、Profile 定义、Key 的计算。

身份验证 - Certificate

数字证书是由一些公认可信的证书颁发机构签发的,不易伪造。数字证书可以用于接收者验证对端的身份,接收者收到某个对端的证书时,会对签名颁发机构的数字签名进行检查,一般来说,接收者事先就会预先安装很多常用的签名颁发机构的证书(含有公开密钥),利用预先的公开密钥可以对签名进行验证。

Server 端通过 Hello 消息,协商交换密钥的方法后,将 Server 证书发送给 Client,用于 Client 对 Server 的身份进行校验。Server 发送的证书必须适用于协商的 KeyExchange 使用的加密套接字,以及 Hello 消息扩展中描述的 Hash/Signature 算法对。

在 WebRTC 中,通信的双方通常将无法获得由知名根证书颁发机构 (CA) 签名的身份验证证书,自签名证书通常是唯一的选择。 定义一种机制,通过在 中增加自签名证书的安全哈希,称为 "证书指纹",在保证 SDP 安全传输的前提下,如果提供的证书的指纹与 中的指纹匹配,则可以信任自签名证书。在实际的应用场景中,SDP 在安全的信令通道 (https) 完成交换的,SDP 的安全完整是可以做到的。这样在 DTLS 协商过程中,可以使用证书的指纹,完成通信双方的身份校验。证书指纹在 SDP 中的描述如下,参考 中 DTLS 参数

a=fingerprint:sha-256 49:66:12:17:0D:1C:91:AE:57:4C:C6:36:DD:D5:97:D2:7D:62:C9:9A:7F:B9:A3:F4:70:03:E7:43:91:73:23:5E

密钥交换 - KeyExchange

ServerKeyExchange 用来将 Server 端使用的公钥,发送给 Client 端。分为两种情况:

ClientKeyExchange 用来将 Client 使用的公钥,发送给 Server 端。

证书验证 - CertificateVerify

使用 ClientRequest 中描述的 Hash/Signature 算法,对收到和发送的 HandShake 消息签名发送个 Server。Server 端对签名进行校验。

加密验证 - Finished

当 Server 和 Client 完成对称密钥的交换后,通过 通知对端进入加密阶段,epoch 加 1。

随后 Client 使用交换的密钥,对 "client finished" 加密,使用 Finished 消息,发送给服务端。Server 使用交换的密钥,对 "server finished" 进行加密发送给客户端。一旦验证了 finished 消息后,就可以正常通信了。

导出 SRTP 密钥

上面介绍了 DTLS 的过程,以下通过结合上面例子给出的实际数据,详细说明 SRTP 密钥的导出步骤。

协商后的加密算法

加密套件:TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f)椭圆曲线算法为:secp256r1,椭圆曲线的点压缩算法为:uncompressed。椭圆曲线算法的基础知识的介绍在 ,由文档中我们可以知道,确定椭圆曲线加密算法有如下参数:

  • 素数 p,用于确定有限域的范围

  • 椭圆曲线方程中的 a,b 参数

  • 用于生成子群的的基点 G

  • 子群的阶 n

  • 子群的辅助因子 h定义为

通过在 中可以查到 secp256r1 对应的参数如下:

secp256r1使用的参数如下:
使用的素数p:
p=FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
=2224(232−1)+2192+296−1
椭圆曲线E:y^2=x^3+ax+b的参数定义如下:
a=FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC
b=5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B
基点G的非压缩格式:
G=046B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C2964FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5
有限域的阶n:
n=FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551
辅助因子h:
h=01

通过 KeyExchange 交换椭圆曲线算法公钥

ECDH Server Parameter

Pubkey:04b0ce3c5f2c4a9fbe7c2257c1328438f3378f74e9f528b6e27a00b44eee4c19e5e6b2cb6cab09f796bcf8c05102b2a4bcdc753d91cc4f431f558c845a1ba6f1ce

记为

ECDH Client Paramter

PubKey: 0454e8fbef1503109d619c39be0ccaf89efa3c3962300476465cbc66b15152cd8a900c45d506420f0123e65d8fbb70cb60b497893f81c5c2a0ef2f4bc2da996d9e

记为

根据 ECDHE 算法计算共享密钥 S(pre-master-secret)

假设 Server 的使用的椭圆曲线私钥为 Ds, Client 使用的 Dc,计算共享密钥的如下,参考

S = Ds * Cpk = Dc * Spk

这个共享密钥 就是我们在 RFC 文档中看到的

计算 master secret

计算 过程如下,可参考

    master_secret = PRF(pre_master_secret, "master secret", ClientHello.random + ServerHello.random)[0..47];

计算出来的 为 48 Bytes,其中 和 在 Hello 消息中给出。 是伪随机数函数 (pseudorandom function),在协商的加密套件中给出。

使用 master_secrete 导出 SRTP 加密参数字节序列

使用 给出的计算方式,使用参数 , , 计算字节序列:

key_block = PRF(master_secret, "EXTRACTOR-dtls_srtp", client_random + server_random)[length]

中描述了需要的字节序列长度。

2 * (SRTPSecurityParams.master_key_len + SRTPSecurityParams.master_salt_len) bytes of data

master_key_len 和 master_salt_len 的值,在 描述的 profile 中定义。我们的实例中使用的 profile 为 ,对应的 profile 配置为:

SRTP_AES128_CM_HMAC_SHA1_80
        cipher: AES_128_CM
        cipher_key_length: 128
        cipher_salt_length: 112
        maximum_lifetime: 2^31
        auth_function: HMAC-SHA1
        auth_key_length: 160
        auth_tag_length: 80

也就是我们需要 字节序列。

导出 SRTP 密钥

计算出 SRTP 加密参数字节序列,在 描述了字节序列的含义:

client_write_SRTP_master_key[SRTPSecurityParams.master_key_len]; // 128 bits
server_write_SRTP_master_key[SRTPSecurityParams.master_key_len]; // 128 bits
client_write_SRTP_master_salt[SRTPSecurityParams.master_salt_len]; // 112 bits
server_write_SRTP_master_salt[SRTPSecurityParams.master_salt_len]; // 112 bits

至此我们得到了,Client 和 Server 使用的 SRTP 加密参数:master_key 和 master_salt.

DTLS 超时重传

DTLS 是基于 UDP 的,不可避免会出现丢包,需要重传。如果处理不当,会导致整个通信双方无法建立会话,通话失败。 给出了超时和重传机制。在处理重传时,以下几点需要注意:

OpenSSL 的 DTLS 功能

DTLS 是一个庞大的协议体系,其中包括了各种加密,签名,证书,压缩等多种算法。大多数项目是基于 OpenSSL 或 BoringSSL 实现的 DTLS 功能。在实际项目使用 OpenSSL 的 DTLS 功能,与协商有关的接口总结如下。

在开源项目 中已经支持了 WebRTC 的基础协议,对 DTLS 协议感兴趣的同学,可以基于 SRS 快速搭建本机环境,通过调试,进一步加深对 DTLS 的理解。

总结

本文通过 WebRTC 中 SRTP 密钥的协商过程,来说明 DTLS 在 WebRTC 中的应用。DTLS 协议设计的各个加密算法的知识较多,加上 TLS 消息的在各种应用场景中的扩展,难免有理解和认知不到的地方,还需要进一步深入探索。

参考文献