Flink初体验
一、flink介绍
Apache Flink 是一个开源的分布式流处理和批处理系统。Flink 的核心是在数据流上提供数据分发、通信、具备容错的分布式计算。同时,Flink 在流处理引擎上构建了批处理引擎,原生支持了迭代计算、内存管理和程序优化。
二、部署环境
操作系统环境:
flink支持Linux, Mac OS X, 和 Windows环境部署,本次部署选择Linux环境部署。
JDK: 要求Java 7或者更高
三、下载软件
jdk1.8.0_144
flink-1.4.2-bin-hadoop26-scala_2.11.tgz
四、部署步骤
1、JDK安装步骤此处省略,安装后验证下JDK环境
$ java -versionopenjdk version "1.8.0_144"OpenJDK Runtime Environment (build 1.8.0_144-b01)OpenJDK 64-Bit Server VM (build 25.144-b01, mixed mode)
2、安装部署flink 本文介绍flink部署分为两种模式:local,standalone。下面依次介绍这两种模式的部署方式。
找到下载的flink压缩包,进行解压
$ tar -zxvf flink-1.4.2-bin-hadoop26-scala_2.11.tgz
首先是local模式,最为简单。
$ cd flink-1.4.2$ bin/start-local.shStarting job manager
我们可以通过查看日志确认是否启动成功
$ tailf flink-csap-taskmanager-0-XXXX.log2018-05-03 10:07:53,718 INFO org.apache.flink.runtime.filecache.FileCache - User file cache uses directory /tmp/flink-dist-cache-4c371de9-0f85-4889-b4d9-4a522641549c2018-05-03 10:07:53,725 INFO org.apache.flink.runtime.taskmanager.TaskManager - Starting TaskManager actor at akka://flink/user/taskmanager#-524742300.2018-05-03 10:07:53,725 INFO org.apache.flink.runtime.taskmanager.TaskManager - TaskManager data connection information: 2c358d6f38949f9aae31c5bddb0cc1dc @ LY1F-R021707-VM14.local (dataPort=55234)2018-05-03 10:07:53,726 INFO org.apache.flink.runtime.taskmanager.TaskManager - TaskManager has 1 task slot(s).2018-05-03 10:07:53,727 INFO org.apache.flink.runtime.taskmanager.TaskManager - Memory usage stats: [HEAP: 111/1024/1024 MB, NON HEAP: 35/36/-1 MB (used/committed/max)]2018-05-03 10:07:53,730 INFO org.apache.flink.runtime.taskmanager.TaskManager - Trying to register at JobManager akka.tcp://flink@localhost:6123/user/jobmanager (attempt 1, timeout: 500 milliseconds)2018-05-03 10:07:53,848 INFO org.apache.flink.runtime.taskmanager.TaskManager - Successful registration at JobManager (akka.tcp://flink@localhost:6123/user/jobmanager), starting network stack and library cache.2018-05-03 10:07:53,851 INFO org.apache.flink.runtime.taskmanager.TaskManager - Determined BLOB server address to be localhost/127.0.0.1:52382. Starting BLOB cache.2018-05-03 10:07:53,858 INFO org.apache.flink.runtime.blob.PermanentBlobCache - Created BLOB cache storage directory /tmp/blobStore-c07b9e80-41f0-490f-8126-7008144c4b0b2018-05-03 10:07:53,861 INFO org.apache.flink.runtime.blob.TransientBlobCache - Created BLOB cache storage directory /tmp/blobStore-e0d1b687-1c47-41c4-b5bc-10ceaa39e778
JobManager进程将会在8081端口上启动一个WEB页面,我们可以通过浏览器到hostname:8081中查看相关的信息。 可以打开页面查看到相关信息,说明local模式部署是没问题的。
下面来看一下standlone部署方式。
安装JDK,解压压缩包,都是一样的。不一样的是我们要修改解压后的flink配置文件。然后在集群主机间做免密,免密操作方法。
修改conf/flink-conf.yaml,我们将jobmanager.rpc.address的值设置成你master节点的IP地址。此外,我们通过jobmanager.heap.mb和taskmanager.heap.mb配置参数来设置每个节点的JVM能够分配的最大内存。从配置参数名字可以看出,这个参数的单位是MB,如果某些节点拥有比你之前设置的值更多的内存时,我们可以在那个节通过FLINK_TM_HEAP参数类覆盖值钱的设置。
我们需要把所有将要作为worker节点的IP地址存放在conf/slaves文件中,在conf/slaves文件中,每个IP地址必须放在一行,如下:
192.168.0.100192.168.0.101...192.168.0.150
然后将修改好的flink包整理复制到集群各个节点。每个节点flink路径保持一致。然后启动集群
$ bin/start-cluster.sh
查看日志是否成功。
以上是部署方法,部署成功后,我们来跑一个demo程序,验证一下Flink的流处理功能,对其有个初步的了解。
flink为了更好的让大家理解,已经给大家提供了一些demo代码,demo的jar包可以在/examples/streaming首先看一下demo代码:
object SocketWindowWordCount { def main(args: Array[String]) : Unit = { // the port to connect to val port: Int = try { ParameterTool.fromArgs(args).getInt("port") } catch { case e: Exception => { System.err.println("No port specified. Please run 'SocketWindowWordCount --port '") return } } // get the execution environment val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment // get input data by connecting to the socket val text = env.socketTextStream("localhost", port, '\n') // parse the data, group it, window it, and aggregate the counts val windowCounts = text .flatMap { w => w.split("\\s") } .map { w => WordWithCount(w, 1) } .keyBy("word") .timeWindow(Time.seconds(5), Time.seconds(1)) .sum("count") // print the results with a single thread, rather than in parallel windowCounts.print().setParallelism(1) env.execute("Socket Window WordCount") } // Data type for words with count case class WordWithCount(word: String, count: Long)}
这个demo是监控端口,然后对端口输入单子进行wordcount的程序。
运行demo,首先打开一个窗口进行端口数据输入:
$ nc -l 9001hellohellowordworld
然后运行demo监控端口单词输入统计:
$ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9001
运行后可以看到结果统计:
$ more flink-csap-taskmanager-0-XXX.out.1
hello : 1
hello : 1
word : 1
world : 1
五、IEDA开发环境
1、安装maven
2、配置IDEA
3、pom文件设置
4.0.0
flink
flink-dev
1.0-SNAPSHOT
1.8
1.8
UTF-8
2.11.12
2.11
2.7.6
1.6.1
org.scala-lang
scala-library
${scala.version}
org.apache.flink
flink-java
${flink.version}
org.apache.flink
flink-streaming-java_${scala.binary.version}
${flink.version}
org.apache.flink
flink-scala_${scala.binary.version}
${flink.version}
org.apache.flink
flink-streaming-scala_${scala.binary.version}
${flink.version}
org.apache.flink
flink-table_${scala.binary.version}
${flink.version}
org.apache.flink
flink-clients_${scala.binary.version}
${flink.version}
org.apache.flink
flink-connector-kafka-0.10_${scala.binary.version}
${flink.version}
org.apache.hadoop
hadoop-client
${hadoop.version}
mysql
mysql-connector-java
5.1.38
com.alibaba
fastjson
1.2.22
src/main/scala
src/test/scala
net.alchim31.maven
scala-maven-plugin
3.2.0
compile
testCompile
-dependencyfile
${project.build.directory}/.scala_dependencies
org.apache.maven.plugins
maven-surefire-plugin
2.18.1
false
true
**/*Test.*
**/*Suite.*
org.apache.maven.plugins
maven-shade-plugin
3.0.0
package
shade
*:*
META-INF/*.SF
META-INF/*.DSA
META-INF/*.RSA
org.apache.spark.WordCount
4、代码示例0
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
/**
* Author: qincf
* Date: 2018/11/02
* Desc: 使用flink对指定窗口内的数据进行实时统计,最终把结果打印出来
* 先在目标主机1.1.1.1机器上执行nc -l 9000
*/
public class StreamingWindowWordCount {
public static void main(String[] args) throws Exception {
//定义socket的端口号
int port;
try{
ParameterTool parameterTool = ParameterTool.fromArgs(args);
port = parameterTool.getInt("port");
}catch (Exception e){
System.err.println("没有指定port参数,使用默认值9000");
port = 9000;
}
//获取运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//连接socket获取输入的数据
DataStreamSource text = env.socketTextStream("1.1.1.1", port, "\n");
//计算数据
DataStream windowCount = text.flatMap(new FlatMapFunction() {
public void flatMap(String value, Collector out) throws Exception {
String[] splits = value.split("\\s");
for (String word:splits) {
out.collect(new WordWithCount(word,1L));
}
}
})//打平操作,把每行的单词转为类型的数据
//针对相同的word数据进行分组
.keyBy("word")
//指定计算数据的窗口大小和滑动窗口大小
.timeWindow(Time.seconds(2),Time.seconds(1))
.sum("count");
//获取可视化JSON
System.out.println(env.getExecutionPlan());
//把数据打印到控制台,使用一个并行度
windowCount.print().setParallelism(1);
//注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
env.execute("streaming word count");
}
/**
* 主要为了存储单词以及单词出现的次数
*/
public static class WordWithCount{
public String word;
public long count;
public WordWithCount(){}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return "WordWithCount{" +
"word='" + word + '\'' +
", count=" + count +
'}';
}
}
}
5、测试步骤
首先在1.1.1.1机器上使用nc命令模拟数据发送
nc -l 9000
然后在IEDA中运营StreamingWindowWordCount程序 在主机上输入字符
[root@data01]# nc -l 9000
a
a
b
c
d
d
此时运行程序后,IDEA中会打印处结果
PassThroughWindowFunction)","pact":"Operator","contents":"Window(SlidingProcessingTimeWindows(2000, 1000), ProcessingTimeTrigger, SumAggregator, PassThroughWindowFunction)","parallelism":8,"predecessors":[{"id":2,"ship_strategy":"HASH","side":"second"}]}]}
WordWithCount{word='a', count=1}
WordWithCount{word='a', count=2}
WordWithCount{word='b', count=1}
WordWithCount{word='d', count=1}
WordWithCount{word='c', count=1}
WordWithCount{word='c', count=1}
WordWithCount{word='a', count=1}
WordWithCount{word='d', count=1}
WordWithCount{word='b', count=1}
大家会看到,wordcount的结果。 仔细看还有一串json输出,这部分是什么呢? 代码中加了一个打印执行计划的部分:
/获取可视化JSON
System.out.println(env.getExecutionPlan());
Flink提供了一个可视化执行计划的结果,类似Spark的DAG图,把json粘贴到可以看到执行计划图:

