Bootstrap

万字长文,Spark 架构原理和RDD算子详解一网打进!

一、Spark 架构原理

SparkContext 主导应用执行

Cluster Manager 节点管理器

把算子RDD发送给 Worker Node

Cache : Worker Node 之间共享信息、通信

Executor 虚拟机 容器启动 接任务 Task(core数 一次处理一个RDD分区)

1.1 Spark架构核心组件

1.2 各部分功能图

  • Driver 注册了一些 Executor后,就可以开始正式执行 spark 应用程序了。第一步是创建 RDD,读取数据源;

  • HDFS 文件被读取到多个 Worker节点,形成内存中的分布式数据集,也就是初始RDD;

  • Driver会根据程序对RDD的定义的操作,提交 Task 到 Executor;

  • Task会对RDD的partition数据执行指定的算子操作,形成新的RDD的partition;

二、RDD概述

2.1 什么是RDD?

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

2.2 RDD具体包含了一些什么东西?

RDD是一个类,它包含了数据应该在哪算,具体该怎么算,算完了放在哪个地方。它是能被序列化,也能被反序列化。在开发的时候,RDD给人的感觉就是一个只读的数据。但是不是,RDD存储的不是数据,而是数据的位置,数据的类型,获取数据的方法,分区的方法等等。

2.3 RDD的五大特性

(1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

(2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

(3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

(4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

(5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

2.4 RDD可以从哪来

scala> sc.textFile("hdfs://wc/e.txt")
res0: org.apache.spark.rdd.RDD[String] = hdfs://wc/e.txt MapPartitionsRDD[1] at textFile at :25

scala> val rdd = sc.textFile("hdfs://192.168.56.137:9000/wc/e.txt")
rdd: org.apache.spark.rdd.RDD[String] = hdfs://192.168.56.137:9000/wc/e.txt MapPartitionsRDD[21] at textFile at :24

2.5 WordCount粗图解RDD

其中hello.txt

三、RDD的创建方式

3.1 通过读取文件生成的

由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

scala> val file = sc.textFile("/spark/hello.txt")

3.2 通过并行化的方式创建RDD

由一个已经存在的Scala集合创建。

scala> val array = Array(1,2,3,4,5)
array: Array[Int] = Array(1, 2, 3, 4, 5)

scala> val rdd = sc.parallelize(array)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at :26

scala>

3.3 其他方式

读取数据库等等其他的操作。也可以生成RDD。

RDD可以通过其他的RDD转换而来的。

四、RDD编程API

Spark支持两个类型(算子)操作:TransformationAction

4.1 Transformation

4.2 Action

触发代码的运行,我们一段spark代码里面至少需要有一个action操作。

常用的Action:

4.3 Spark WordCount代码编写

使用maven进行项目构建

(1)使用scala进行编写

查看官方网站,需要导入2个依赖包

详细代码

SparkWordCountWithScala.scala

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object SparkWordCountWithScala {
  def main(args: Array[String]): Unit = {

    val conf = new SparkConf()
    /**
      * 如果这个参数不设置,默认认为你运行的是集群模式
      * 如果设置成local代表运行的是local模式
      */
    conf.setMaster("local")
    //设置任务名
    conf.setAppName("WordCount")
    //创建SparkCore的程序入口
    val sc = new SparkContext(conf)
    //读取文件 生成RDD
    val file: RDD[String] = sc.textFile("E:\\hello.txt")
    //把每一行数据按照,分割
    val word: RDD[String] = file.flatMap(_.split(","))
    //让每一个单词都出现一次
    val wordOne: RDD[(String, Int)] = word.map((_,1))
    //单词计数
    val wordCount: RDD[(String, Int)] = wordOne.reduceByKey(_+_)
    //按照单词出现的次数 降序排序
    val sortRdd: RDD[(String, Int)] = wordCount.sortBy(tuple => tuple._2,false)
    //将最终的结果进行保存
    sortRdd.saveAsTextFile("E:\\result")

    sc.stop()
  }

运行结果

4.4 WordCount执行过程图

五、RDD的宽依赖和窄依赖

5.1 RDD依赖关系的本质内幕

由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系;RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。如图所示显示了RDD之间的依赖关系。

从图中可知:

窄依赖:是指每个父RDD的一个Partition最多被子RDD的一个Partition所使用,例如map、filter、union等操作都会产生窄依赖;(独生子女)

宽依赖:是指一个父RDD的Partition会被多个子RDD的Partition所使用,例如groupByKey、reduceByKey、sortByKey等操作都会产生宽依赖;(超生)

需要特别说明的是对join操作有两种情况:

(1)图中左半部分join:如果两个RDD在进行join操作时,一个RDD的partition仅仅和另一个RDD中已知个数的Partition进行join,那么这种类型的join操作就是窄依赖,例如图1中左半部分的join操作(join with inputs co-partitioned);

(2)图中右半部分join:其它情况的join操作就是宽依赖,例如图1中右半部分的join操作(join with inputs not co-partitioned),由于是需要父RDD的所有partition进行join的转换,这就涉及到了shuffle,因此这种类型的join操作也是宽依赖。

总结:

在这里我们是从父RDD的partition被使用的个数来定义窄依赖和宽依赖,因此可以用一句话概括下:如果父RDD的一个Partition被子RDD的一个Partition所使用就是窄依赖,否则的话就是宽依赖。因为是确定的partition数量的依赖关系,所以RDD之间的依赖关系就是窄依赖;由此我们可以得出一个推论:即窄依赖不仅包含一对一的窄依赖,还包含一对固定个数的窄依赖。

一对固定个数的窄依赖的理解:即子RDD的partition对父RDD依赖的Partition的数量不会随着RDD数据规模的改变而改变;换句话说,无论是有100T的数据量还是1P的数据量,在窄依赖中,子RDD所依赖的父RDD的partition的个数是确定的,而宽依赖是shuffle级别的,数据量越大,那么子RDD所依赖的父RDD的个数就越多,从而子RDD所依赖的父RDD的partition的个数也会变得越来越多。

5.2 依赖关系下的数据流视图

在spark中,会根据RDD之间的依赖关系将DAG图(有向无环图)划分为不同的阶段,对于窄依赖,由于partition依赖关系的确定性,partition的转换处理就可以在同一个线程里完成,窄依赖就被spark划分到同一个stage中,而对于宽依赖,只能等父RDD shuffle处理完成后,下一个stage才能开始接下来的计算。

因此spark划分stage的整体思路是:从后往前推,遇到宽依赖就断开,划分为一个stage;遇到窄依赖就将这个RDD加入该stage中。因此在图2中RDD C,RDD D,RDD E,RDDF被构建在一个stage中,RDD A被构建在一个单独的Stage中,而RDD B和RDD G又被构建在同一个stage中。

在spark中,Task的类型分为2种:ShuffleMapTask和ResultTask

简单来说,DAG的最后一个阶段会为每个结果的partition生成一个ResultTask,即每个Stage里面的Task的数量是由该Stage中最后一个RDD的Partition的数量所决定的!而其余所有阶段都会生成ShuffleMapTask;之所以称之为ShuffleMapTask是因为它需要将自己的计算结果通过shuffle到下一个stage中;也就是说上图中的stage1和stage2相当于mapreduce中的Mapper,而ResultTask所代表的stage3就相当于mapreduce中的reducer。

在之前动手操作了一个wordcount程序,因此可知,Hadoop中MapReduce操作中的Mapper和Reducer在spark中的基本等量算子是map和reduceByKey;不过区别在于:Hadoop中的MapReduce天生就是排序的;而reduceByKey只是根据Key进行reduce,但spark除了这两个算子还有其他的算子;因此从这个意义上来说,Spark比Hadoop的计算算子更为丰富。