Bootstrap

精选算法面试-优先队列

一.简介

Java中PriorityQueue通过二叉小顶堆实现,可以用一棵完全二叉树表示。

二.示例

2.1 数据流中的第 K 大元素

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

示例

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]
解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

private PriorityQueue queue;
private int limit;
public KthLargest(int k, int[] nums) {
    queue = new PriorityQueue<>(k);
    limit = k;
    for(int n : nums){
        add(n);
    }
}
//固定的queue,添加元素
public int add(int val) {
    if(queue.size() < limit){
        queue.add(val);
    }else if(val > queue.peek()){
        queue.poll();
        queue.add(val);
    }
    return queue.peek();
}

2.2 滑动窗口最大值

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值。

示例

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
1 [3  -1  -3] 5  3  6  7       3
1  3 [-1  -3  5] 3  6  7       5
1  3  -1 [-3  5  3] 6  7       5
1  3  -1  -3 [5  3  6] 7       6
1  3  -1  -3  5 [3  6  7]      7

优先级队列实现

public int[] maxSlidingWindow(int[] nums, int k) {
        int length = nums.length;
        int[] res = new int[length - k + 1];
        PriorityQueue queue = new PriorityQueue<>(new Comparator() {
            @Override
            public int compare(int[] o1, int[] o2) {
                return o1[0] != o2[0] ? o2[0] - o1[0] : o2[1] - o1[1];
            }
        });
        for (int i = 0; i < k; i++) {
            queue.offer(new int[]{nums[i],i});
        }
        res[0] = queue.peek()[0];
        //滑动窗口变大了 (k + k - 1) 运用大顶堆,找最大
        for (int i = k; i < length; i++) {
            queue.offer(new int[]{nums[i],i});
            while (queue.peek()[1] <= (i-k)){
                queue.poll();
            }
            res[i-k+1] = queue.peek()[0];
        }
        return res;
}

双端队列

public int[] maxSlidingWindow(int[] nums, int k) {
        int n = nums.length;
        Deque deque = new LinkedList();
        for (int i = 0; i < k; ++i) {
            while (!deque.isEmpty() && nums[i] >= nums[deque.peekLast()]) {
                deque.pollLast();
            }
            deque.offerLast(i);
        }
        int[] ans = new int[n - k + 1];
        ans[0] = nums[deque.peekFirst()];
        for (int i = k; i < n; ++i) {
            while (!deque.isEmpty() && nums[i] >= nums[deque.peekLast()]) {
                deque.pollLast();
            }
            deque.offerLast(i);
            while (deque.peekFirst() <= i - k) {
                deque.pollFirst();
            }
            ans[i - k + 1] = nums[deque.peekFirst()];
        }
        return ans;
    }

参考